
DIANA I/O Update
Brian Bockelman

Plus a few CMS items

1

Fast IO Mode
• As presented in late December, we have a “Bulk

API” branch which aims to avoid costly library
functions per-event:

• https://github.com/bbockelm/root/tree/root-
bulkapi

• One the simplest branches, this is a O(8x)
improvement over TTreeReader.

2

https://github.com/bbockelm/root/tree/root-bulkapi
https://github.com/bbockelm/root/tree/root-bulkapi

Current Work
• Last few weeks have focused on a “TTreeReaderFast”.

• The “Fast” part of the code is relatively straightforward.
Most difficult part is to verify the compiler inlines and does
reasonable optimization.

• The “TreeReader” part is proving hard: generating the
correct TBranch* at runtime is resulting in a lot of code
duplication with existing TTreeReader.

• Leaning toward dumping the current line of work, salvaging
the pieces that interact with the bulk API, and simply
encoding these into the existing TTreeReader.

3

IMT Writing
• Initial IMT writing patches have landed in master!

• Good news: CMS saw up to 2x throughput
improvement for reconstruction on KNL hosts on the
largest data tier. See next slide

• Good news: Even the simple “event.exe” macro in
ROOT sees ~2x improvement (Even more if one
tweaks the file to have more large branches).

• Bad news: single-threaded ROOT IO time still
dominates CMS KNL benchmark.

4

RECO Throughput KNL; N threads = 1.5 * N streams
Th

ro
ug

hp
ut

 (e
ve

nt
s/

se
c)

0

0.5

1

1.5

2

N Streams
0 30 60 90 120 150 180 210 240 270 300

6.08 wo/IMT RECO
6.08 w/IMT RECO
6.08 wo/IMT AOD
6.08 w/IMT AOD
6.08 w/IMT txt

with IMT patches

RECO Throughput on KNL

low-IO

no-IO

high-IO job

To IMT or to MT: Discuss!
• Amdahl’s Law declares we need to decrease the serial fraction.

Three approaches:

• Improve IMT: perform serialization in parallel (detect when it is
“safe” or via config).

• Multithreaded interfaces: As part of the ROOT7 cleanup,
rewrite interfaces to make MT-safe.

• TMemFile: Have multiple files in memory that are “fast merged”.
Dan Riley @ Cornell about to start investigation.

• Looking at prior slide, maybe target ~16 processing threads
per TMemFile?

6

LZ4, redux redux
• LZ4 performance results still make no sense:

• Comparing ZLIB & LZ4 command line tools on a ROOT file,
LZ4 is ~4x faster at decompression than ZLIB.

• When using corresponding libraries within ROOT, LZ4
decompression is comparable (sometimes slower) than
ZLIB.

• This appears to be true on dummy files with 1MB
baskets!

• How can this be true?

7

Sample ROOT file repository
• I’d like to formalize & improve the ad-hoc collection of ROOT

files on root.cern.ch.

• For MC-based files, would like to keep a repository of scripts
to generate various files.

• For data files: is git w/ LFS an option at CERN?

• DavidA is starting to look into this.

• My current thinking is to start with a set of curated scripts
to produce output files (using experiment software on
CVMMFS) and a simple Makefile.

8

http://root.cern.ch

Other: ROOT Contributions
• We’ve mentioned previously, but I wanted to suggest a few things that

would make contributing easier:

• Slack group for ROOT devs?

• Have Jenkins builds post summary of branch build results to PR?

• Travis-CI “build” that checks coding conventions. LLVM-based
checker?

• Post Docker images for relevant Linux build platforms?

• We can volunteer effort - but may need GitHub admin access!

• Have precious reviewer time focus on code, not on build failures!

9

